
Exploring Energy Saving Opportunities in Fault

Tolerant HPC Systems

Marina Morán1, Javier Balladini1, Dolores Rexachs2, and Enzo
Rucci3

1Dpto. Ingenieŕıa de Computadoras, Facultad de Informática,
Universidad Nacional del Comahue, Argentina,

{marina.moran,javier.balladini}@fi.uncoma.edu.ar
2Dpto. Arquitectura de Computadores y Sistemas Operativos,

Universidad Autónoma de Barcelona, España,
dolores.rexachs@uab.es

3III-LIDI, Facultad de Informática, Universidad Nacional de La
Plata - CIC, La Plata, Buenos Aires, Argentina,

erucci@lidi.info.unlp.edu.ar

October 27, 2023

Abstract

Nowadays, improving the energy efficiency of high-performance com-
puting (HPC) systems is one of the main drivers in scientific and techno-
logical research. As large-scale HPC systems require some fault-tolerant
method, the opportunities to reduce energy consumption should be ex-
plored. In particular, rollback-recovery methods using uncoordinated
checkpoints prevent all processes from re-executing when a failure oc-
curs. In this context, it is possible to take actions to reduce the energy
consumption of the nodes whose processes do not re-execute. This work is
an extension of a previous one, in which we proposed a series of strategies
to manage energy consumption at failure-time. In this work, we have en-
riched our simulator and the experimentation by including non-blocking
communications (with and without system buffering) and a largest num-
ber of candidate processes to be analyzed. We have called the latter as
cascade analysis, because it includes processes that gets blocked by com-
munication indirectly with the failed process. The simulations show that
the savings were negligible in the worst case, but in some scenarios, it was
possible to achieve significant ones; the maximum saving achieved was
90% in a time interval of 16 minutes. As a result, we show the feasibility
of improving energy efficiency in HPC systems in the presence of a failure.

This is the accepted version of the manuscript that was sent to review to Journal of
Parallel and Distributed Computing (ISSN 1096-0848). This manuscript was finally accepted
for publication on October 27hs, 2023 and its final published version is available online at
https://doi.org/10.1016/j.jpdc.2023.104797. ©2023. This manuscript version is made
available under the CC-BY-NC-ND 4.0 license

1

ar
X

iv
:2

31
1.

06
41

9v
2

 [
cs

.D
C

]
 1

4
N

ov
 2

02
3

https://doi.org/10.1016/j.jpdc.2023.104797
https://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords— E nergy saving Fault Tolerance Methods Checkpoint Parallel Ap-

plications ACPI DVFS

1 Introduction

Nowadays, improving the energy efficiency of high-performance computing (HPC)
systems is one of the main drivers in scientific and technological research. In
this context, exploring different ways to reduce energy consumption during the
execution of large-scale applications is essential to maintain and increase the
enormous computing power achieved. Even more, increasing the number of
processing units also requires scalable fault tolerance (FT) methods. Thus, it is
relevant to evaluate the energy-saving opportunities presented by these meth-
ods.

A message-passing application can be affected by failures on multiple compo-
nents in distributed memory computing systems. In HPC, some methods allow
continuing with the execution of the application in the presence of a failure. One
of the most widely used methods is rollback-recovery through the use of check-
points. When a failure occurs, the application can restart its execution from
the checkpoints. Checkpoints can be performed in coordinated (synchronously)
or uncoordinated (asynchronously) manner. In the first case, all application
processes must stop, perform the checkpoint, and then continue with their ex-
ecution. When a failure occurs, all processes restart from the last checkpoint.
In the second case (uncoordinated checkpoints), the processes usually perform
their checkpoint at different times. When a node fails, the processes of the
non-failed nodes can continue their execution. As it will be shown, the uncoor-
dinated FT method presents an interesting opportunity to explore power-saving
scenarios.

The challenge is to investigate what possibilities exist to reduce energy con-
sumption when one or more processes stop their execution due to communica-
tion blocks with processes directly or indirectly affected by the failure. From an
energy-saving point of view, how to take advantage of the fact that uncoordi-
nated checkpoints prevent all the application processes from having to go back
in the presence of a failure? One possibility is to use the nodes of the processes
that did not fail to execute another application of the system job queue, to use
those resources for the computation of another application. Another possibil-
ity consists of keeping the affected application running and applying a series of
strategies on the nodes whose processes do not need to be recovered. However,
these processes, at a certain moment of execution, may be affected by long waits
due to communications with processes that are recovering. Hence, if waiting is
unavoidable, what is the best strategy to consume less energy at that time?

Our objective is to know and manage the energy consumption of an HPC
system by applying different strategies. The strategies to be applied depend on
the underlying hardware features and the state of the application when a per-
manent failure occurs1. Strategies that increase application execution time (in
relation to the reference execution time when a failure occurs) are discarded. We
consider the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques
and system hibernation at the node level, using the Advanced Configuration

1Permanent failures are those which cause fail-stops in Message Passing Interface (MPI).

2

and Power Interface (ACPI). By having a characterization of the energy con-
sumption required to execute the application and its communication pattern,
it is possible to estimate the energy consumption under certain strategies from
the moment of a fault. Then, by using a simulator that we have designed and
developed, we can evaluate the use of the strategies. Using a simulator allows
us to simplify a real system, reduce costs, and focus on essential features. In
our case, it also allows us to have a flexible environment to experiment with
different configurations. In addition, it integrates with a pre-existing tool that
allows us to view its results.

In [1] we show how the power consumption of checkpoint and restart op-
erations varies by lowering the processor clock frequency. This work, which is
the continuation of [2] and [3], presents a revision of the energy model, and the
following contributions:

• The definition of a series of strategies for energy saving when a failure
occurs; in particular, these strategies are applied to nodes of the processes
that do not have to rollback. In [2] we analyzed processes/nodes that
communicate directly with the node where the failure occurred. In this
work, we increase the number of candidate processes to be analyzed to
apply some energy-saving strategy.

• The design and development of a simulator oriented to evaluate the pro-
posed strategies and to select the most convenient one from the energy
point of view. In this work, we extended the simulator to include non-
blocking communication operations (with and without system buffering)
and the analysis of the new candidate processes indicated in the previous
contribution.

This work is organized as follows: Section 2 discusses some related works.
Next, Section 3 presents some preliminary concepts used in the article and
Section 4 describes the strategies evaluation and application. Then, Section 5
presents the energy model and Section 6 describes the simulator. Finally, the
experimental results are shown and discussed in section 7, while conclusions and
future work are summarized in section 8.

2 Related Work

In recent years the number of papers about energy consumption in HPC systems
has been increasing. We mention here some of them, classified according to
whether they are related to Fault Tolerance or not.

2.1 Fault Tolerance and energy consumption

Some works evaluate the energy behavior of fault tolerance methods (rollback re-
covery, replication). In [4], the authors evaluate the consumption of checkpoint
and restart operations at different processor clock frequencies and on different
input/output devices, and design a runtime software to minimize energy con-
sumption. In [5] propose a computational model, called shadow computing,
which provides dynamic adaptive resilience. They use redundancy to imple-
ment fault tolerance, through shadow processes, which run at a lower clock rate

3

than the main process. They present an energy model to estimate the execu-
tion speed that minimizes energy consumption. [6] use DVFS to throttle CPU
speed during checkpoint writes to measure the energy savings and performance
impact. A comparative evaluation of energy consumption in three different
rollback-recovery protocols (checkpoint/restart, message logging, and parallel
recovery) is done in [7]. They evaluate the three protocols in a cluster with the
capacity to measure the power dissipated, and develop an energy model to make
projections for large-scale systems under different conditions.

A calibrator that allows measuring the energy consumption of the operations
used in three methods of fault tolerance is presented in [8]. These data feed a
framework (called Ecofit), to estimate the energy consumption of an applica-
tion with a given TF method. Another work that also proposes a framework
(called PowerCheck) that seeks to minimize energy consumption (but only for
checkpoint operations) is the work presented at [9]. The framework consists of
a user-space library, which among other tasks interacts with Running Average
Power Limiting (RAPL) to measure and limit the power dissipated during the
checkpoint.

Some works try to estimate the optimal checkpoint interval in energy terms,
like [10] [11] [12].

In [13], the authors propose using non-recovering nodes to execute another
application from the system queue, to take advantage of the computing power
of those nodes and improve the global performance of the cluster. Unlike this
proposal, we also propose other strategies that use DVFS and hibernation on
nodes that continue to run, without changing the application.

Finally, [14] is the most similar proposal to this work, since they propose
a localized rollback based on the data flow, and reduce the clock frequency of
the waiting processes to the minimum possible. We evaluate other strategies,
in addition to changing to the minimum frequency, and we do so both for the
computation and waits of the processes that continue to execute.

2.2 Energy saving

This work has similarities to others that slow down the non-critical path to
consume less power without substantially increasing execution time: [15], [16].
While most of these proposals apply clock frequency adjustments during the
application running, we apply it at failure time. For example, [15] uses a per-
core Software Controlled Clock Modulation or DVFS to throttle the frequencies
of cores not on the critical path of an MPI application. In [16] they adjust the
clock frequencies of the tasks in a manner that they arrive just in time at the
synchronization moment.

Some works use hardware counters to predict energy consumption, f.e. [17],
where they run various machine learning methods, measure hardware counters,
and analyze which ones correlate best with runtime, and CPU and memory
power consumption. To do this, the authors get some functions to predict the
time and energy savings when applying possible optimizations to the applica-
tions. In [18] they propose a model for estimating the power consumed by an
application using the least amount of performance monitoring counters possible.

In [19], they perform a simulation of an HPC workload to evaluate the energy
savings when activating and deactivating nodes according to the computational
and power requirements of the cluster. In this work, we also shut down nodes

4

when the waiting phase is long enough. Other works analyze the active waits
of an MPI application and evaluate potential energy savings by changing the
clock frequency during those waits, as in [20], or entering a power-gated state
executing a sleep call, as in [21]. Active waits are also an energy-saving point
in our proposal.

3 Background

The following subsections introduce some concepts that are used in the article,
such as the states defined by ACPI, operation modes and active waits in MPI,
and rollback recovery mechanism.

3.1 ACPI

The ACPI specification provides an open standard that allows the operating
system to manage the power of the computing system and provides advanced
mechanisms for energy management2. The specification defines a series of global
states and substates for the system. In the global working G0 state the appli-
cations are executed. In this global state, there is one executing state (C0) and
some inactive states (C1..Cx). Inside C0, performance states (P states) are de-
fined, which determine performance and power demand. In the global sleeping
state G1 the computer consumes a small amount of power and applications are
not executed. In this state, the context is saved, so the operating system does
not need to restart when waking up. The latency for returning to the working
state varies on the type of sleeping substates selected (S1-S4). There are two
more states, soft and mechanical off not used in this work. Table 1 shows a
brief description of the states and substates.

In this work, we use performance and sleeping states (P and S states). In
GNU/Linux, it is possible to change the frequency of the processor (P states)
with the userspace governor, which permits modifying the frequency of each
core. To change the sleeping state (S states) a string has to be written to the
/sys/power/state file. In the simulations, when we mention the strategy of
sleeping the node we refer to the Suspend-to-RAM (S3) state, and when we
mention clock frequency changes, the same change is applied to all cores of the
node.

3.2 Communication operations in MPI

The MPI standard provides blocking and non-blocking operations for message
passing 3. Blocking send operations are characterized by returning as soon as
it is safe to reuse the buffer (either because the message was copied into the
receiving buffer or a sender’s system buffer). In standard mode (MPI Send,
MPI Recv), it is up to the MPI implementation to decide whether outgoing
messages will be buffered. If the system provides buffering, the send call may
complete before a matching receive is invoked. If the system does not provide
buffering, the send call will not complete until a matching receive operation has
been posted, and the data has been moved to the receiver buffer.

2https://www.uefi.org/specifications
3https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

5

Table 1: ACPI global states and substates

Global State Substates
G0 Working Processor Power States. C0: Executing state. A proces-

sor that is in the C0 state will also be in a Performance
State (Px states). The P0 state means an execution at the
maximum capacity of performance and power demand. As
the number of P state increases, their performance and de-
manded power is reduced. The processors implement the P
states using the technique of DVFS.
C1...Cx: inactive states. Very short transition latencies in
comparison to transition latencies between states G0-G1

G1 Sleeping S1-S4 are idle states of the system associated with G1.
Increasing the state number requires less power and longer
latency to exit the state. There are no transitions between
S1-S4, it is always with S0.

G2 Soft Off S5. It consumes a minimum of energy. No applications are
running and the system context is not saved.

G3 Mechanical Off The system is completely off and there is no electrical cur-
rent running through the circuit.

Non-blocking operations return immediately, and another operation, usually
called wait (MPI Wait), is used to verify that it is safe to reuse the buffer for the
send case, or that the data is already in the receive buffer for the receive case.
This allows us to overlap computation with communication. In the standard
mode (MPI Isend, MPI Irecv), if the system buffer is used, the wait will return
after copying the data to that buffer. If no system buffer is present, the wait
will return after the data is copied to the receiver buffer. Fig. 1 shows the return
point of the non-blocking operations with and without using the system buffer.
In this work, we consider both blocking and non-blocking operations in their
standard mode.

3.3 Active and idle waiting in MPI

In MPI parallel applications, it may happen that one process must wait for
another to send or receive a message. During these waits, the process can
keep the processor busy by active-waiting, or releasing it, and using polling or
interrupts. Active-waiting means polling at the highest available frequency for
a signal to be able to react instantly once the signal is received [20]. An active
wait keeps the processor busy and consumes energy without doing useful work.
An idle wait can affect application performance, due to C states transitions
[22]; this is why various MPI implementations provide active wait as the default
operating mode. As this operating mode is configurable, in this work we consider
both cases.

3.4 Rollback recovery

A consistent global state can be found during a successful and fault-free exe-
cution of parallel computing. Inconsistent states can occur because of failures.

6

Figure 1: Non-blocking operations return point.

A fundamental goal of any rollback-recovery protocol is to lead the system to
a consistent state after a failure. This method consists of periodically saving
the state of the application in stable storage, which is known as a checkpoint.
At failure time, it is possible to restart the application from the last success-
fully saved state, which is called restart. In the case of coordinated checkpoints,
a consistent global state is obtained by synchronizing all the processes, stop-
ping their execution, and performing the checkpoint. When a process fails, all
processes must restart from the last checkpoint. As we can see, all the appli-
cation processes re-executing produce energy and time overhead. In the case
of uncoordinated checkpoints, processes take their checkpoints independently,
avoiding synchronization time and I/O contention [23]. At failure time, only
failed processes restart from the last checkpoint, using fewer resources for their
recovery than a coordinated checkpoint. However, ensuring a consistent global
state is not as straightforward as in the case of coordinated checkpoints. When
a process restarts, orphaned and/or lost messages can appear, causing other
processes to roll back to ensure consistency. This is called domino effect, and
there are different techniques to control it, such as the use of message logging
[24]. Uncoordinated checkpoints allow the use of advanced checkpoints. If a
process is going to block by communication, and its last checkpoint happened a
relatively long time ago, the process performs a checkpoint before blocking. In
this way, useless waiting time is used by a checkpoint operation. In this work,
we consider the use of advanced checkpoints.

Hybrid approaches also exist and they take advantage of coordinated and un-
coordinated checkpoints. In this scheme, the processes are divided into groups.
Within each group, a coordinated checkpoint scheme is used, but between
groups, an uncoordinated checkpoint strategy is followed. There are differ-
ent criteria for defining groups. For example, all processes running on the same
node could be in a group, because when a node fails all its processes must
restart[25]. Another way to define groups can be with processes that communi-

7

cate frequently [26]. The first approach is the one used in the present work.

4 Strategies definition and application

The use of uncoordinated checkpoints as a fault tolerance method of a message
passing HPC application enables one to take actions on the nodes that should
not recover from the failure. At the time of a failure, it is possible to apply
two different options, which depending on the state of the system, will have a
different impact on indices such as cluster productivity and energy consumption.
One option is to change the application and the other one is to maintain it, but
changing the P and S states of the surviving nodes. Both options are defined
and analyzed below.

4.1 Change of the application

When a node fails, one possible action to take is to change the application, as
proposed in [13]. One of the nodes that did not fail is used for process recovery
(restart and re-execution). The rest of the nodes are used to run another appli-
cation in the job queue. In this way, the productivity of the computer system is
increased. To apply this option, the recovery time must be long enough so that
it is worth changing the application. While the processes that were running on
the failed node recover, the rest of the nodes do useful work allowing another
application to move forward.

Switching between applications is a costly task in terms of time and resources
because the filesystem has to be accessed multiple times, with consequent energy
consumption. The checkpoints are performed on the application that comes out
(write operations), the checkpoints of the incoming application are loaded (read
operations) and the restart is executed (read operations). These steps must
then be repeated to reload the original application. If the re-execution time
is long enough to outweigh the cost of these operations, this alternative allows
nodes that did not fail to continue running at maximum performance. Allowing
another application to proceed while another recovers from a failure improves
the overall productivity of the system.

4.2 Changes of the P and S states

This proposal focuses on energy saving and that is why a set of strategies based
on changing the P and S states (see subsection 3.1) is evaluated to apply to the
nodes that did not fail. This subsection defines the possible strategies to apply
after the failure of a node when the application is not changed. In addition, it
shows why it is important to consider both direct and indirect process blocking,
and discusses some situations to take into account in the application of the
strategies.

Fig. 2 shows different scenarios, where two processes, P1 and P2, are running
on different nodes. The little squares indicate that the process is performing
checkpoints. As uncoordinated checkpoints are used, they may be performed
at different times, as shown in the figure. Case A shows a failure-free execu-
tion, where P1 sends two messages to P2, indicated by t send1 and t send2.
Messages are sent and received in an order scheduled by the application, which

8

Figure 2: Strategies application for different failure cases. (A) No failure occurs.
(B) A failure occurs and no action is taken (reference case). (C) A failure occurs
and frequency change for the computational phase is taken. (D) A failure occurs
and frequency change in the waiting phase is taken. (E) A failure occurs and
sleeping in the waiting phase is taken.

maximizes the time dedicated to useful computation while minimizing the waits
for communications (data transfers and synchronizations). In an efficient par-
allel application, waits not related to the failure are minimal. For simplicity,
we consider these waits within the computation phase. Case B to case E
shows an execution where process P1 fails (indicated by a yellow star) and must
recover. This figure (and the next one) assumes the sending process always
fails. However, this does not affect the application of the strategies, because
this application is not affected by whether the failing process is the sender or
the receiver. Instead, the analysis focus on the moment in which the alive pro-
cess gets blocked by communication due to a failure. After a failure, the restart
is initiated, and the re-execution begins (indicated in blue). We can see how
the sending of the second message is delayed due to the failure, and the process
P2 must wait (indicated in red or gray). In Case B no action is taken, and
it will serve as a reference for the evaluation of the strategies. In this case,
the computing and waiting phases are indicated. These phases are defined for
processes that do not fail, and are defined as follows:

• The compute phase comprises the execution of the application from
the moment of failure until it gets blocked because of the failure. This
blocking is caused by a communication operation with a process that has
failed or that is blocked because of the failure. Communications with other
processes are included in the computing phase. In this way, additional
waits can appear, not related to the failure. It may also happen that
during this phase checkpoints are performed.

9

• The waiting phase begins with the blocking related to the failure and
ends when the communication concludes and the process begins to com-
pute again.

At failure time, the best strategy for the computation and waiting phase is
determined. The strategy for the computation phase can be to lower the clock
frequency. The strategies for the waiting phase can be to sleep the node (in some
state S1-S4) or to switch to the minimum clock frequency. The computation
and waiting phases altogether, form the intervention interval.

In case C, the P2 node changes to the selected clock frequency during the
computation phase, indicated by the wavy line. This makes P2 submit the
second receive operation later, shortening the waiting phase. The selected clock
frequency must meet two criteria:

1. The duration of the computation phase running with the selected fre-
quency must not exceed the synchronization time of the process. That is,
the selected frequency must not cause waits in other processes.

2. The energy consumption of the compute phase in conjunction with the
waiting phase should be lower than the consumption in the reference case
(case B).

The selected frequency may be the maximum frequency, in which case there
is no change in frequency. For simplicity, we always select a single frequency for
the entire computation phase, although it could be the case that it is a com-
bination of two or more frequencies that best meet the criteria just mentioned
(applying each frequency during a fraction of the computation phase).

In case D, a change of the clock frequency during the waiting phase was
decided, indicated by the wavy line. In case E, the node was sent to sleep
during the waiting phase. Neither of these actions affects the waiting phase
duration, but it does impact energy consumption indeed.

The strategies explained above can be applied in combination. For example,
it could be the case that the clock frequency is changed for the computation
phase and the waiting phase. As we can see, there are several possible scenarios
where different actions must be evaluated and managed.

The strategies can be summarized as follows:

• Frequency change for the computational phase (case C).

• Frequency change for the waiting phase (case D).

• Sleeping for the waiting phase (case E).

The evaluation of the strategies for the computing and waiting phase is
done altogether, considering the impact on energy consumption and execution
time. The selected configuration will be the one that achieves the lowest energy
consumption for the intervention interval, without affecting the application ex-
ecution time. For this, the selected frequency for the computation phase of a
process should avoid that other processes having to wait for it. Regarding the
waiting phase, if the duration of this phase is long enough to sleep the node
and subsequently wake up it, achieving a lower energy consumption, then this
option is selected. Otherwise, if the waiting operations are configured to be

10

Figure 3: Cascade blocking and communications depth.

active waits, the way to minimize energy consumption is by using the minimum
frequency. If the waiting operations are configured to be idle waits, the way to
minimize energy consumption is to do nothing [20].

4.2.1 Cascade blocking and communications depth

Now we consider the processes which are indirectly affected by a failure. In
Fig. 3, P3 does not block with the failed process; it blocks with an alive process,
that is blocked because of the failure. We name cascade blocking to these block-
ing situations, which arise as a result of the failure but are not directly related to
the failed process. These blockings are propagated over a set of processes during
the execution of the application from the moment of failure. This situation can
occur in the immediate following communication, or in the subsequent ones. We
define depth to be the number of subsequent communications to consider after
the failure, looking for one that is blocked for this reason. In Fig. 3, P3 blocks
on the second communication with P2, giving a depth of 2. The depth can be
calculated by looking at the pattern of communications between each pair of
processes and choosing the maximum number of communications found in the
pattern.

4.2.2 Estimation of the compute and waiting phases

To choose the strategies an algorithm has been developed that estimates the
blocking times of each process. In this algorithm, we call children of a process,
the processes with which it communicates. The main steps are summarized
below:

• First, the lists are filled; List1 contains the processes of the parent level,
initially the processes of the failed node. List2 contains the child processes
of the processes in List1, with the times at which they are estimated to
block for communication with their parents. For example, for the case
shown in Fig. 4, the lists would be as follows:

List1={P1}

List2={(P2,t1);(P3,t3)}

• The algorithm then visits each List2 process and checks if it will be blocked
earlier by another List2 process (sibling process), in which case it updates
the block time. Continuing with the example, by visiting the first element
of List2, we see that P2 does not block before with any sibling process.
Visiting the second element of List2, P3, we see that it blocks with P2

11

Figure 4: View of three processes at the time of failure t0.

at a time before the current block time of P3, and after the block time of
P2. That is, P3 blocks at a time t2 that verifies that t1 < t2 < t3. After
the update, List2 would look like this:

List2={(P2,t1);(P3,t2)}

• Finally, we proceed to the next level, assigning List2 to List1 and emp-
tying List2. After this step, the lists would be as follows:

List1={(P2,t1);(P3,t3)}

List2={}

These steps are repeated until there are no more processes affected by the
failure and unanalyzed.

The output of the algorithm is the time at which each process is expected
to block due to the failure. The complexity of this algorithm is in the order of
the number of processes by the number of communications of each process. For
more detail, you can see the pseudocode in Algorithm 1.

This algorithm is suitable for applications with long compute phases, which
allow the application of some strategies in these phases. In applications with
short compute phases, where the impact of the frequency change is likely to
be negligible, it may be convenient to estimate only the waiting phases and
evaluate the strategies for these phases.

4.2.3 Evaluation of the energy-saving strategies

Once the computing and waiting phases of each process have been estimated,
the possible strategies are evaluated. For this, the compute phase of each live
process is instantiated with each of the possible clock frequencies, taking into
account the restriction of not affecting the reference time. Based on this, the new
duration of the waiting phase and the appropriate action to take are evaluated.
Then the combination of strategies that obtain the lowest estimated energy
consumption in each case is selected. In a previous work [2], we showed a
pseudocode for strategy evaluation, which has been implemented in a simulator.
This algorithm implements what is described in the energy model in section 5,
and is in the order of the number of clock frequencies by the number of processes.
The evaluation of the strategies for each process can be computed in parallel.

12

Algorithm 1 Pseudo-code to analyze cascade-blocked processes

1: List1 = (Pfailed, 0); // The elements of the lists are a pair (process id,
block time)

2: List2 = ListGlobal = {};
3: while there are processes that communicate with processes in List1 that do

not belong to ListGlobal do
4: for each (Pparent, parent block time) in List1 do
5: for each process Pchild, child of Pparent do
6: comm time = next comm(Pchild, Pparent); // Find the next

communication between both processes
7: i = 0;
8: while (comm time < parent block time) AND (i<depth) do
9: comm time = next comm(Pchild, Pparent);

10: i++;
11: end while
12: if Pchild belongs to List2 then
13: block time = get block time(Pchild);
14: if comm time < block time then
15: Update List2(Pchild, comm time) // Update Pchild block time
16: end if
17: else
18: List2 = List2 + (Pchild, comm time); // Add Pchild to List2
19: end if
20: end for
21: end for

// List2 Convergence
22: keep analyzing = false;
23: repeat
24: for each process Pi in List2 do
25: if exist Px in List2 that communicates with Pi in time t such that:

Px block time < t < Pi block time then
26: UpdateList2(Pi, t); // Update Pi block time
27: keep analyzing = true;
28: end if
29: end for
30: until not keep analyzing
31: ListGlobal = ListGlobal + L1; // group the processes already analyzed

32: List1 = List2; // List2 levels up
33: List2 = {}; // List2 is emptied to incorporate the processes of a new

level
34: end while

13

4.2.4 Secondary effects of the frequency change in the compute
phase

When a node changes its clock frequency to a lower frequency, all the processes
running on that node are slowed down. The time in which communication takes
place between these processes and other non-slowed (or differently slowed) pro-
cesses will be affected. This could result in an error in the estimation of the
compute and waiting phases of these last processes, and a suboptimal applica-
tion of the strategies. One possible solution is to evaluate processes in the same
order that blocking propagation occurs, resulting in a slowdown propagation.
For simplicity, the simulator does not implement it.

4.2.5 Secondary effects of sending a node to sleep

When using non-blocking MPI operations (see Subsection 3.2), sending to sleep
a node may affect application execution. For example, consider the following
situation. A process issues a non-blocking send, and then its node is sent
to sleep by the application of the strategy. Later, another process emits the
corresponding receive, being not able to receive the data that is in the buffer of
the sending process because the node of that process is sleeping. This causes an
unexpected wait because if the strategy had not been applied, the node would
be awake and the communication would have been done. One possibility is, in
these cases, not sending the node to sleep. To do this, it would be necessary to
keep a registry of the pending non-blocking communications. Another option
could be to wake up the node when required. In the latter case, if active waits
are used (see Subsection 3.3), and the remaining wait time justifies it, the clock
frequency should be changed to the minimum available. That is, there would
be a change of strategy in the middle of a waiting phase.

5 Energy model

The model presented below estimates the energy savings obtained when the best
strategy is applied. The input of the model is application, fault tolerance and
system data, and the estimated duration of the compute and waiting phases of
each process, as indicated in Table 2. To calculate the energy consumption dur-
ing an interval of time we need to know the interval duration and the associated
average power dissipation. Power and time can be obtained from characteriza-
tions as in [1]. For simplicity, we consider the computation to be homogeneous,
i.e. the application dissipates the same power throughout its entire execution.
The application communication pattern can be obtained from the execution
trace [27]. The duration of the compute and wait phases (see subsection 4.2)
have to be estimated at failure time. Table 3 details model parameters for ref-
erence. Case B of Fig. 2 reflects the situation where no strategies are applied
and serves as a reference.

The energy saving obtained with the application of the strategies is estimated
as the sum of the savings in each node, as shown in Eq. (1), where n is the
number of nodes where the application is executed.

Total Energy Saving =

n∑
j=1

Energy Savingnode j (1)

14

Table 2: Energy model inputs

System data Power and time required to sleep and to wake up a
node, downtime.

Application data Power dissipated and slowdown factor for each fre-
quency during the computation. Pattern and fre-
quency of communication among processes.

Fault tolerance data Checkpoint and restart duration. The power dissi-
pated and the slowdown of each frequency during
checkpoint

Variables Compute and wait phase duration, number of check-
points during intervention interval.

The energy savings of each node (Eq. 2) is calculated as the difference be-
tween the estimated energy consumption without intervention, ENI (Energy
No Intervention) and the minimum estimated energy consumption with inter-
vention, EI (Energy with Intervention).

Energy Savingnode j = ENI(fmax)−Min{EI(fi)} (2)

The energy consumption without intervention, ENI, is shown in Eq. 3. This
equation is instantiated with the maximum available clock frequency.

ENI(fmax) = E comp(fmax) + E awake wait(fmax) (3)

The energy consumption with intervention, EI, is shown in Eq. 4. This
equation is instantiated with each of the clock frequencies, fi. Once we have all
the estimations using all the frequencies, the lowest one is selected (as indicated
in Eq. 2).

EI(fi) = E comp(fi) + EI wait(fi) (4)

In Eq. 3 and 4, the energy consumed by the node is estimated as the sum of
the energy consumed during the computation phase plus the energy consumed
during the waiting phase.

In all the equations, the clock frequency (indicated as an argument) refers to
the frequency at which the computation phase will be executed. In particular,
in the equations referring to the waiting phase, this argument is necessary to
estimate the duration of this phase (when the computation phase is executed
with that frequency). Different frequencies in the computation phase can cause
different actions to be applied in the waiting phase.

5.1 Compute phase energy

To estimate the energy consumed during the computation phase we use Eq. 5.

E comp(fi) = T comp(fi)× P comp(fi)+

N ckpt× T ckpt(fi)× P ckpt(fi)
(5)

In this equation, the duration of the compute phase is calculated for the
selected frequency using the slowdown factor beta, as indicated in Eq. 6.

15

T comp(fi) = T comp(fmax)× β(fi) (6)

The slowdown factor can be characterized as in Table 4 and indicates how
much slower the application runs with frequencies lower than the maximum
one. The duration of the possible checkpoints that are performed in this stage
is calculated in the same way (Eq. 7).

T check(fi) = check time× γ(fi) (7)

The number of checkpoints that are carried out during the intervention in-
terval (usually one or none) is an input to the model. The power dissipated
with each frequency, P comp(fi), is an input to the model.

5.2 Waiting phase energy

To estimate the energy consumed during the waiting phase without intervention
(ENI) we use Eq. 8, 9 and 10.

E awake wait(fi) =

{
E active wait(fi) if active wait

E idle wait(fi) if idle wait
(8)

E active wait(fi) = T wait(fi)× P active wait(fi) (9)

E idle wait(fi) = T wait(fi)× P idle wait (10)

In Eq. 8, the energy consumption will be determined by the message waiting
configuration. If the configuration indicates that active waits are used (Eq. 9),
the energy consumed is calculated using the power dissipated by the correspond-
ing frequency. On the other hand, if idle waits are used (Eq. 10), the processor
is practically idle, and the energy consumed is calculated using a power that is
close to the base power. We call base power the power dissipated when the node
is in Working G0 state, i.e. no jobs are running and most of the cores are in
inactive states (see Table 1).

To estimate the energy consumed during the waiting phase with interven-
tion (EI) we use Eq. 11. This equation distinguishes two cases, depending on
whether the node goes to sleep or stays awake.

EI wait(fi) =

{
E awake wait(fi) if no sleeping

E sleep wait(fi) if sleeping
(11)

If the node stays awake we use the Eq. 8, 9 and 10 described above. If
the node goes to sleep, the Eq. 12 is used. This equation estimates the energy
considering the power dissipated during the transitions between the active-sleep-
active states and while the node is sleeping.

EI sleep wait(fi) = T go sleep× P go sleep+

T sleep(fi)× P sleep+

T wakeup× P wakeup

(12)

16

The energy consumed to sleep and wake up the node will depend on the
state of the node. For simplicity, we use a single value. To sleep a node, two
conditions must be met. First, the waiting time must be greater by a certain
factor, µ1, than the total time that the node requires to sleep and wake up.
This is to prevent sleeping a node for a period shorter or equal to the time it
takes to put it to sleep and to wake it up. This condition is expressed in Eq. 13.

T wait(fi) > µ1 × (T go sleep+ T wakeup) (13)

Secondly, the energy consumption while sleeping (including the energy con-
sumed going to sleep and waking up) must be lower, by a certain factor µ2, than
the consumption obtained if the node remains awake. This is to avoid sleeping
a node that will have almost the same power savings as staying awake. This
condition is expressed in Eq. 14.

E sleep wait(fi) < µ2 × E awake wait(fmin) (14)

6 The simulator

We have developed an event-based simulator that uses the SMPL library [28]
written in C language. This simulator allows us to evaluate the strategies under
different system configurations, different characteristics of the application and
different failure times. The main features of the simulator are detailed below:

• The failure of a node in a parallel message-passing application with unco-
ordinated checkpoints at the system level is simulated. For simplicity, a
single process per node is simulated; in particular the most representative
process of the node.

• We refer to the representative process of a node as the one that first
blocks due to the failure. This simplification is based on the fact that if
the processes are assigned to a node by affinity, the communication blocks
of all the processes in the node will be at a similar time to that of the
simulated process.

• In the same line as the previous point, the strategy selected when evalu-
ating the representative process is applied to the node.

• Checkpoints can be triggered by events or by time; as we seek to simulate
transparent checkpoint to the application, we activate it by time.

• The moving ahead of checkpoints is simulated (see subsection 3.4).

• The checkpoint files are stored in a parallel file system external to the
nodes.

• The message log and the domino effect have not been considered.

• The messages have a fixed size.

• The overhead caused by the strategies evaluation and implementation is
not considered.

17

Table 3: Parameters

Parameter Name Description
E comp(fi) Energy consumed by the node during the computing

phase, at frequency fi.
E awake wait(fi) Energy consumed by the node during the waiting

phase when it remains awake.
EI wait(fi) Energy consumed by the node during the waiting

phase when the intervention takes place.
E active wait(fi) Energy consumed by the node during the active wait-

ing phase at frequency fi.
E idle wait(fi) Energy consumed by the node during the waiting

phase when using idle wait.
E sleep wait(fi) Energy consumed by the node during the waiting

phase when it goes to sleep.
T ckpt(fi) Checkpoint duration running at frequency fi.
T comp(fi) Computation phase duration when node executes at

the frequency fi.
T go sleep T wakeup Times required by a node to sleep and wake up, re-

spectively.
T sleep(fi) Time that node is sleeping when compute phase is ex-

ecuted at frequency fi, without considering the time
to go to sleep and to wake up.

T wait(fi) Waiting phase duration when computation phase is
executed at frequency fi.

T ckpt Checkpoint duration.
P go sleep P wakeup Power dissipated while sleeping and waking up a

node, respectively.
P sleep Power dissipated when the node is sleeping.
P comp(fi) Power dissipated during computation when running

at frequency fi.
P ckpt(fi) Power dissipated during checkpoint at frequency fi.
P active wait(fi) Power dissipated during active wait at frecuency fi.
P idle wait Power dissipated during the idle wait.
N ckpt Number of checkpoints during the computation

phase (zero or one).
β(fi) γ(fi) Slowdown of instruction and checkpoint execution

when frequency fi is used.
µ1 µ2 Time and energy threshold to determine whether or

not to sleep a node.

18

Table 4: Power and slowdown at different clock frequencies

Application Checkpoint
Frequency (GHz) Average Power (W) β Average Power (W) γ

2.8 166 1 150 1
2.1 148 1.2 142 1.1
1.7 139 1.5 131 1.2
1.2 126 2.1 125 1.4

• The simulated MPI functions are blocking and non-blocking standard
mode (see subsection 3.2).

The simulator inputs are the same as the energy model described in sub-
section 5, and are detailed in Table 2. At the time of failure, the simulator
evaluates the model for each surviving process with each of the clock frequen-
cies provided, and determines the best strategy to apply. The simulator output
includes the estimated energy savings when applying the selected strategy, and
a trace to visualize the behavior of the application execution. The trace is visu-
alized with the Paraver4 tool, a flexible HPC application performance analysis
and visualization tool.

7 Experimentation and results analysis

The following subsections describe the experimental work carried out with the
simulator. The proposed strategies seek to exploit different opportunities to
reduce the energy consumption of the applications affected by the failures. The
experiments present specific scenarios to show the validity of the proposal. The
results obtained are analyzed and some discussions are at the end of the section.

7.1 Experimental settings

Table 4 shows dissipated power and slowdown factor (β and γ) obtained from
measurements on a six-core Intel Xeon E5-2630 node, with a frequency range
of 1.2 GHz to 2.8 GHz (with the mechanism Intel Turbo Boost disabled). The
base power is 60W. The node sleep and wake times are set at 25 and 5 seconds
respectively, and the average powers at 51 and 91 watts respectively. The av-
erage power dissipated while the node is sleeping is 12 watts. The checkpoint
duration is set to two minutes, and the MPI waits are configured as active waits,
except otherwise indicated. The scenarios present four processes (or nodes) and
the failing node is the one that hosts process 0.

7.2 Experiments and results analysis

Different simulated scenarios are discussed in this subsection. For each scenario,
the following data are shown:

• A table with the particular configuration data of the experiment, as in
Table 5.

4http://www.bsc.es/computer-sciences/performance-tools/paraver

19

• A table with the actions selected and the energy savings estimations (as in
Table 6): In this table, column N indicates the node number, the Action
column indicates the strategy applied, column T indicates the phase du-
ration, and column TT is the total duration. The last columns show the
savings in joules, joules per second, and percent (Save(J), SaveRate(J/s),
and Save(%) respectively). The percent column is calculated by dividing
the estimations of the joules saved by the joules used without interven-
tion (ie without applying any action). This metric is useful in an intra-
scenario analyses. To compare different scenarios, J/s is preferred.

• The trace graphic: These graphics show the states of each process, the
communications between processes, and the time at which any of the cor-
responding strategies are applied to them. Fig. 5 indicates the states,
communication lines and flags in trace graphics. The red blocks indi-
cate communication blocking or wait (sometimes imperceptible due to the
zoom applied to the trace). The flags indicate the beginning and the end
of the strategy application in that node. If the strategy applied is to sleep
the node, the wait is indicated in gray. Fig. 6 shows a communication
operation between two processes, which is indicated by a yellow line that
joins both processes. The inclination of the line (when appreciated) allows
us to see who is the sender and who is the receiver. In blocking communi-
cations, Fig. 6 (a), the line goes from the beginning of the send to the end
of the receive. In non-blocking communications, Fig. 6 (b), the line goes
from the beginning of the send to the end of the receiver’s wait operation
(MPI Wait). In Fig. 6 (b), the wait in the receiver is short (the red block
is thin) because the wait operation was successful; otherwise, it would be
longest.

Figure 5: States, communication lines and flags in trace graphics

7.2.1 Scenario 1: Short vs. long re-execution time

In this scenario, we analyze a case with a long re-execution time compared to one
where the re-execution time is short. Table 5 shows the simulation settings. In
the short re-execution time case (Fig. 7a), the moment of the failure is configured
to occur immediately after a checkpoint. The frequency is changed to 2.1 GHz
during the computation phase in all processes because lower frequencies increase
the synchronization time with the recovering process, and strategies that affect
the total execution time are not applied. As this scenario is configured with

20

(a) Blocking communication. (b) Non-blocking communication.

Figure 6: Communications in trace graphics

Table 5: Simulation parameters for Scenario 1: Short vs. long re-execution time

Communication interval 21.6 min.
Communication pattern Process P0 sends and receives messages from processes P1, P2, and P3.
MPI Waits Active
MPI operations Blocking

active waits, and the wait duration is long enough to justify a frequency change
(but not to send to sleep), it is changed to the minimum frequency to save
energy. With these actions, the three nodes would achieve an energy saving of
14% in a time interval of 13.4 minutes

The long re-execution time case can be seen in Fig. 7b. In this case, the
time of failure has been set far from the checkpoint time. As the waiting phases
of the three surviving processes are very long, the three nodes are sent to sleep
at this phase. Since the nodes will sleep in the waiting phase, it is convenient
to arrive at this phase as soon as possible, to obtain greater energy savings. In
this scenario, the clock frequencies different from the maximum one implies a
longer compute phase, and therefore a shorter waiting phase. This leads to fewer
energy savings and this is the reason why the clock frequency is not changed
in the compute phase. With these actions, the intervened nodes would be able
to consume almost 86% less energy during the intervention interval, which is
around 60 minutes. This scenario achieves better results than the previous one
due to its long waits where the nodes go to sleep. Figs. 7a and 7b are at different
scales to better appreciate each case. Table 6 shows the results obtained.

7.2.2 Scenario 2: Blocking vs. non-blocking MPI operations

In this scenario, we compare the use of blocking and non-blocking operations.
Table 7 shows the configuration of the simulation. Fig. 8a shows the use of
blocking operations. In this figure, after the failure, process P0 cannot send data
to process P1. Without this data, process P1 cannot continue its computation
and gets blocked. At this moment process P1 goes to sleep, achieving a saving
of 72% in almost 5 minutes.

Fig. 8b shows the use of non-blocking operations. In this case, after the
failure, process P1 can complete its communication with Process P0 (the wait

21

Table 6: Selected actions and energy savings for scenario 1: Short vs. long
re-execution time

Compute phase Wait phase
N Action T (m) Action T (m) TT (m) Save (J) Save Rate(J/s) Save (%)

Short re-execution time
1 2.1 GHz 12.07 1.2 GHz 1.32 13.39 18,704.5 23.28 14.03
2 2.1 GHz 12.07 1.2 GHz 1.32 13.39 18,705.56 23.28 14.02
3 2.1 GHz 12.07 1.2 GHz 1.32 13.39 18,706.06 23.28 14.02

Long re-execution time
1 No action 4.37 sleep 56.00 60.37 516,084.73 153.59 85.82
2 No action 4.37 sleep 56.00 60.38 516,085.34 153.59 85.82
3 No action 4.38 sleep 56.00 60.38 516,084.69 153.59 85.82

Table 7: Simulation parameters for scenario 2: Blocking vs. non-blocking MPI
operations

Communication interval 5 min.
Communication pattern Processes P0 and P2 send messages to process 1. Process P3 sends messages to process P2
MPI Waits Active
MPI operations Blocking

is successful) because it had been done just before the failure. Then, it continues
computing and blocks at the next wait. This results in a longer computational
phase when compared to the previous case. As can be seen in Figure 8b, process
P1 changed the frequency in its computation and waiting phase (indicated by
the green flags in the figure), achieving a saving of almost 30% in an interval
time similar to the previous case (4 minutes and a half).

This difference in power savings is because the node sleeps in the first case
(use of blocking operations), while it changes clock frequency in the second case
(use of non-blocking operations). Table 8 shows the results obtained.

7.2.3 Scenario 3: Active waits vs. idle waits

In this scenario, we compare the use of active waits against idle waits (see
subsection 3.3). Table 9 shows the simulation configuration. In both cases, the
actions selected for the computation phase are to change the frequency. In the
active wait case (Fig. 9a), the action selected for the waiting phase is to change
the frequency to the minimum one, indicated by the green flag at the beginning
of the phase. In the idle wait case (Fig. 9b), there is no action in the waiting
phase.

In the first case (active waits), the energy savings are 36%, against the 0.09%
for the second case (idle waits), in the same interval of time. This shows the
positive impact of the application of the strategy on active waits. Even when
the scenario presents short waiting times, if the system is configured with active
waiting, the use of the strategies achieves considerable energy savings. Table 10
shows the results obtained.

7.2.4 Scenario 4: With and without system buffers

In this scenario, we analyze the effects of using or not using system buffers during
communication operations (see subsection 3.2). Tabla 11 shows the simulation

22

(a) Short re-execution time.

(b) Long re-execution time.

Figure 7: Scenario 1

configuration. As indicated in this table, processes 1, 2, and 3 send data to
process 0.

Fig. 10a shows the case of non-blocking operations without buffering. As it
can be seen, after the failure, the next wait operation of the non-failing processes
is successful because the communication had taken place just before the failure.
On the next wait operation, all three processes get blocked because the receiving
process (Process P0) is still re-executing. The selected strategy for the three
processes is to keep the frequency in the compute phase and sleep in the waiting
phase. The observed energy saving is approximately 30% in an interval of 17
minutes.

The system buffers store the sent messages so that several send operations
(in the case of blocking operations) or several wait operations (in the case of
non-blocking operations) can be issued successively without blocking. Fig. 10b
shows a simulation where system buffering is used. As it can be seen, the chosen

23

Table 8: Selected actions and energy savings for scenario 2: Blocking vs. non-
blocking MPI operations

Compute phase Wait phase
N Action T (m) Action T (m) TT (m) Save (J) Save Rate(J/s) Save (%)

Blocking operations
1 No action 0.86 sleep 3.67 4.53 32,502.30 147.77 72.06

Non-blocking operations
1 2.1 GHz 2.07 1.2 GHz 2.15 4.22 11,468.73 45.30 27.29

Table 9: Simulation parameters for scenario 3: Active waits vs. idle waits

Communication interval 60 sec.
Communication pattern Process P0 sends and receives messages from processes P1, P2, and P3.
MPI Waits Active and non-active
MPI operations Blocking

communication pattern (living processes send data to the failing process) avoids
the blocking of live processes, which are not affected by the failure, and therefore
do not receive the application of any of the strategies.

Although the proposed experiment is quite atypical, it serves to magnify
and observe the impact that the presence or absence of system buffering has on
communications operations when an application becomes desynchronized due
to the failure of a node. This is the reason why the simulator is able to enable
or disable the use of the system buffering in communication operations. In
a typical message-passing application, the processes usually alternate between
send and receive operations, so that if the send is not blocked (due to the use
of the system buffer), the receive will be blocked, and the processes can receive
the application of the strategies. Beyond the savings achieved in one case or
another, the use of the buffer allows the processes to advance in doing useful
work, which has a positive impact on energy efficiency. Table 12 shows the
results obtained.

7.2.5 Scenario 5: With and without analysis of cascade-blocked pro-
cesses

This scenario analyzes the effect of incorporating cascade-blocked processes (see
section 4) into the processes that receive the application of the strategies. Ta-
ble 13 shows the configuration of the simulation. Fig. 11a shows a simulation
that does not analyze cascade blocked processes. As it can be seen, process
P1 blocks with process P0 (failing process) and receives the application of a
strategy (sleep). However, processes P2 and P3 get also blocked because of the
failure, but in an indirect manner. By including cascade-blocked processes in
the analysis, we can note that process P2 communicates with process P1 four
times before it get blocked, so we need to raise the depth level to 5 (see section 4
for a definition of depth). Fig. 11b shows that the blocking state of process P2
is now detected, and the strategy selected in this case is to send the node to
sleep. When this blocking state is included in the analysis, the blocking state
of process P3 is also detected, which is cascade-blocked with process P2. The
strategy applied to process P3 is to change the frequency during the waiting
phase. Although process P3 blocks on the third communication with process

24

(a) Blocking operations.

(b) Non-blocking operations.

Figure 8: Scenario 2

P2, and a depth of 3 would have been enough, it was necessary to increment
the depth to 5 to include the mentioned blocking state in the analysis (because
of its relation with process P2).

By including the cascade-blocked processes in the simulator analysis, we
cover from a scenario where only one process takes an action to improve energy
efficiency (Fig. 11a), to another where the three living processes do the same
(Fig. 11b). Analyzing the cascade-blocked processes, allow us to increase energy
savings from 32,500 J to almost 80,000 J in intervals between 9 and 14 minutes.
Table 14 shows the results obtained.

7.2.6 Scenario 6: With and without checkpoint anticipations

This scenario analyzes the impact of bringing forward checkpoints. Table 15
shows the configuration of the simulation. This scenario compares two cases

25

Table 10: Selected actions and energy savings for scenario 3: Active waits vs.
idle waits

Compute phase Wait phase
N Action T (m) Action T (m) TT (m) Save (J) Save Rate(J/s) Save (%)

Active waits
1 2.1 GHz 0.64 1.2 GHz 2.56 3.20 11,673.84 60.78 36.61
2 2.1 GHz 0.64 1.2 GHz 2.56 3.20 11,674.89 60.75 36.60
3 2.1 GHz 0.65 1.2 GHz 2.56 3.21 11,675.40 60.72 36.58

Non-active waits
1 2.1 GHz 0.64 No action 2.56 3.20 12.83 0.33 0.09
2 2.1 GHz 0.64 No action 2.56 3.20 12.87 0.33 0.09
3 2.1 GHz 0.65 No action 2.56 3.21 12.92 0.33 0.09

Table 11: Simulation parameters for scenario 4: With and without system
buffers

Communication interval 5 min.
Communication pattern Processes P1, P2, and P3 send messages to process P0.
MPI Waits Active
MPI operations Non-blocking

with a long re-execution time.
Fig. 10 a) and b) show the cases when the advanced checkpoint anticipations

is enabled and disabled in the simulator, respectively.
Figs. 12a and 12b show the cases when checkpoint anticipation is enabled

and disabled in the simulator, respectively. The selected strategy in both cases
is to maintain the maximum frequency in the compute phase and sleep the
nodes in the waiting phase. In the first case, before entering the waiting phase,
checkpoints are anticipated. This causes a shorter waiting phase than the sec-
ond case. The results show slightly higher energy savings in the case where no
checkpoint is advanced, (85.8% versus 83%). Although there is a slightly im-
proves in the first case (without advanced checkpoints), in the second case (with
advanced checkpoints) it avoids stopping the application later when it might be
doing useful computation. Table 16 shows the results obtained.

7.2.7 Scenario 7: Matrix Multiplication

In this scenario, we analyze an MPI master-worker matrix multiplication appli-
cation (C = A × B), because it is well-known, computationally intensive, and
representative application of scientific computing. The Table 17 shows the con-
figuration of the simulation. The test application does successive multiplication
of different Ai submatrices with B to obtain resultant Ci. To achieve this, the
master process broaadcast matrix B to the worker processes. After that, the
master process distributes parts of Ai, the worker processes compute the mul-
tiplication, and return the partial result to the master process. When all the
worker finish this stage, the application enter the next one, where the master
distributes another part of Ai until completing C.

The application was characterized with the pas2p tool [27], considering ma-
trices of 2048×2048 elements (of type double) and 4 processes/nodes. As a
result, the communication intervals between processes were obtained.

26

(a) Active waits.

(b) Idle waits.

Figure 9: Scenario 3

Three different cases are analyzed: The first case shows a long re-execution
time with blocking operations, the second case shows a short re-execution time
with blocking operations, and the third case shows a short re-execution time
with non-blocking operations (the graphics has different time scales). The Table
18 shows the results obtained for these cases.

In Fig. 13, the case of the long re-execution time from the checkpoint is pre-
sented. In this case, the nodes corresponding to the three live processes are sent
to sleep, obtaining an estimated saving of 91% (144.929 J), for an intervention
time of approximately 15 minutes. This means that, in the 15 minutes that the
failed process needs to recover, the energy consumption would be 91% lower
than the consumption obtained without applying any of the strategies.

If, on the other hand, the failure occurs near the checkpoint (Fig. 14), the
intervention interval is reduced to two and a half minutes, achieving a saving
of around 43% (about 10,000J, against almost 145,000J of the previous case).

27

Table 12: Selected actions and energy savings for scenario 4: With and without
system buffers

Compute phase Wait phase
N Action T (m) Action T (m) TT (m) Save (J) Save Rate (J/s) Save (%)

Without system buffer
1 No action 11.25 sleep 6.27 17.51 56549.4 150.36 32.78
2 No action 11.26 sleep 6.26 17.52 56426.2 150.35 32.7
3 No action 11.28 sleep 6.24 17.52 56303 150.34 32.62

Table 13: Simulation parameters for scenario 5: With and without analysis of
cascade-blocked processes

Communication interval 5 sec.
Communication pattern Processes 0 and 2 send messages to process 1, and process 3 sends messages to process 2.
MPI Waits Active
MPI operations Blocking

The selected strategy in this case was to change the frequency of live nodes in
its computation and waiting phase.

Fig. 15 shows the case of short re-execution time with blocking operations.
The selected strategy was the same as in the previous case, changing the clock
frequency in the computation and waiting phases of all live processes. However,
in this case, the computation phase lasts 9 seconds, against the 2 seconds for
the same phase in the version with blocking operations. The saving obtained
in this case is around 41% (9,605J, against the 10,022J of the previous case), in
the same time interval (two and a half minutes).

7.3 Discussion

The experimental work with the simulator shows us that the duration of the
waiting phase defines the selection of the strategy. If the wait is long enough to
send the node to sleep, this will be the chosen option, since the energy savings
obtained exceed by far those obtained with any combination of the other strate-
gies. Furthermore, when the strategy of sleeping a node is selected, the model
that the simulator implements always selects, for the compute phase, the lowest
clock frequency that does not produce an increase in execution time. In this
way, the wait is not shortened, and energy savings are maximized. Moreover, if
the failure occurs near the checkpoint time, the wait may be short, and in these
cases, the duration of the compute phase plays a fundamental role.

In SPMD or non-dynamic Master-Worker applications where blockings prop-
agate rapidly, it might be counterproductive to change the clock frequency in
the computation phase to sleep longer during the waiting phase. In applications
with loosely coupled communication patterns, where one group of tasks commu-
nicates infrequently with another group of tasks, there can be frequency change
during the compute and waiting phases, but this will also depend on whether
the re-execution (of the recovering processes) is short.

28

(a) Without system buffers.

(b) With system buffers.

Figure 10: Scenario 4

8 Conclusions and future work

In this work, we have enriched our previous energy model by including non-
blocking communications (with and without system buffering) and the cascade-
blocking effect. Next, we have extended the simulator by incorporating the new
features of the energy model, to evaluate their potential benefits.

While implementing the proposal some issues were identified as being im-
portant:

• The depth of communications, that is, the number of successful communi-
cations that a process can perform before it gets blocked by another living
process, due to collateral effects of the failure.

• The slowdown propagation when the clock frequency is changed in the
compute phase (in a context with cascade-blocked processes included in

29

Table 14: Selected actions and energy savings for scenario 5: With and without
analysis of cascade-blocked processes

Compute phase Wait phase
Node Action T (m) Action T (m) TT (m) Save (J) Save Rate (J/s) Save (%)

Without analysis of cascading blocked processes
1 No action 4.84 sleep 3.67 8.51 32,517.7 147.77 38.36

With analysis of cascading blocked processes
1 No action 4.51 sleep 4.00 8.51 35,597.70 148.29 42.00
2 No action 4.93 sleep 4.00 8.93 35,636.20 148.30 40.03
3 No action 12.00 1.2 GHz 02.02 14.02 8,655.07 71.5 6.29

Table 15: Simulation parameters for scenario 6: With and without checkpoint
anticipations

Communication interval 4 sec.
Communication pattern Process P0 sends and receives messages from processes P1, P2, and P3.
MPI Waits Active
MPI operations Blocking

the analysis).

• The need to wake up a node early, because a process on another node
needs it awake to continue its execution.

Through the experimental work, we were able to discover some opportunities
to reduce energy consumption in these scenarios. The simulations show that the
savings were negligible in the worst case, but in some scenarios, it was possible to
achieve significant ones; the maximum saving achieved was 90% in an execution
time of 16 minutes. More generally, we can conclude that:

• Non-blocking operations and the use of system buffering in communica-
tions present fewer opportunities for the application of strategies because
they avoid blocking states and permit the computation to proceed.

• Incorporating cascade-blocked processes shows significant increases in en-
ergy savings even when just a few nodes are considered.

• In applications where communication is unusual, the strategies for the
compute phase play a key role (since these phases are long).

• In applications where compute phases are short, the duration of the wait-
ing phase defines the selection of the strategy. In particular, if the failure
occurs far from the last checkpoint time, the waiting phases will be long
and the node should probably be sent to sleep.

As a result, we show the feasibility of improving energy efficiency in HPC
systems in the presence of a failure. Among future works, we plan:

• To implement the strategies on a real system as a proof of concept, con-
sidering the secondary effects described before

• To include runtime characterization of the application.

30

(a) Without analysis of cascade-blocked processes

(b) With analysis of cascade-blocked processes

Figure 11: Scenario 5

Funding

This research has been supported by the Agencia Estatal de Investigacion (AEI),
Spain and the Fondo Europeo de Desarrollo Regional (FEDER) UE, under con-
tract PID2020-112496GB-I00 and partially funded by the Fundacion Escuelas
Universitarias Gimbernat (EUG).

References

[1] M. Morán, J. Balladini, D. Rexachs, and E. Luque, “Prediction of en-
ergy consumption by checkpoint/restart in HPC,” IEEE Access, vol. 7,
pp. 71791–71803, 2019.

31

Table 16: Selected actions and energy savings for scenario 6: With and without
checkpoint anticipations

Compute phase Wait phase
Node Action T (m) Action T (m) TT (m) Save (J) Save Rate (J/s) Save (%)

With moving ahead checkpoints
1 No action 6.37 sleep 54.00 60.37 497.604.73 153.58 83.02
2 No action 6.37 sleep 54.00 60.38 497,605.34 153.58 83.01
3 No action 6.38 sleep 54.00 60.38 497,604.69 153.58 83.01

Without moving ahead checkpoints
1 No action 4.37 sleep 56.00 60.37 516.084.73 153.59 85.82
2 No action 4.37 sleep 56.00 60.38 516,085.34 153.59 85.82
3 No action 4.38 sleep 56.00 60.38 516,084.69 153.59 85.82

Table 17: Simulation parameters for scenario 7: Matrix multiplication

Communication interval 6.5 sec.
Communication pattern Process P0 sends and receives messages from processes P1, P2, and P3.
MPI Waits Active
MPI operations Blocking (first two cases) and non-blocking (last case)

[2] M. Morán, J. Balladini, D. Rexachs, and E. Rucci, “Towards management
of energy consumption in hpc systems with fault tolerance,” in 2020 IEEE
Congreso Bienal de Argentina (ARGENCON), pp. 1–8, IEEE, 2020.

[3] M. Morán, J. Balladini, D. Rexachs del Rosario, and E. Rucci, “Some issues
to consider in the management of energy consumption in hpc systems with
fault tolerance,” in X Jornadas de Cloud Computing, Big Data & Emerging
Topics (La Plata, 2022), pp. 17–22, 2022.

[4] T. Saito, K. Sato, H. Sato, and S. Matsuoka, “Energy-aware i/o optimiza-
tion for checkpoint and restart on a nand flash memory system,” in Pro-
ceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale,
pp. 41–48, ACM, 2013.

[5] B. Mills, T. Znati, and R. Melhem, “Shadow computing: An energy-aware
fault tolerant computing model,” in 2014 International Conference on
Computing, Networking and Communications (ICNC), pp. 73–77, IEEE,
2014.

[6] B. Mills, R. E. Grant, K. B. Ferreira, and R. Riesen, “Evaluating en-
ergy savings for checkpoint/restart,” in Proceedings of the 1st International
Workshop on Energy Efficient Supercomputing, pp. 6:1–6:8, ACM, 2013.

[7] E. Meneses, O. Sarood, and L. V. Kalé, “Energy profile of rollback-recovery
strategies in high performance computing,” Parallel Computing, vol. 40,
no. 9, pp. 536–547, 2014.

[8] M. el Mehdi Diouri, O. Glück, L. Lefevre, and F. Cappello, “Ecofit: A
framework to estimate energy consumption of fault tolerance protocols for
hpc applications,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pp. 522–529, IEEE, 2013.

[9] K. H. R. Rajachandrasekar, A. Venkatesh and D. K. Panda, “Power-check:
An energy-efficient checkpointing framework for HPC clusters,” 2015 15th

32

(a) With checkpoint anticipations

(b) Without checkpoint anticipations

Figure 12: Scenario 6

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, pp. 261–270, 2015.

[10] M. A. Amrizal and H. Takizawa, “Optimizing energy consumption on HPC
systems with a multi-level checkpointing mechanism,” in 2017 Interna-
tional Conference on Networking, Architecture, and Storage (NAS), pp. 1–
9, IEEE, 2017.

[11] D. Dauwe, R. Jhaveri, S. Pasricha, A. A. Maciejewski, and H. J. Siegel,
“Optimizing checkpoint intervals for reduced energy use in exascale sys-
tems,” in 2017 Eighth International Green and Sustainable Computing
Conference (IGSC), pp. 1–8, IEEE, 2017.

[12] N. El-Sayed and B. Schroeder, “Understanding practical tradeoffs in HPC
checkpoint-scheduling policies,” IEEE Transactions on Dependable and Se-

33

Figure 13: Scenario 7: Matrix multiplication with long reexecution time (block-
ing operations)

Table 18: Selected actions and energy savings for scenario 7: Matrix multipli-
cation

Compute phase Wait phase
Node Action T (m) Action T (m) TT (m) Save (J) Save Rate (J/s) Save (%)

With long reexecution time (blocking operations)
1 No action 0.09 sleep 15.83 15.92 144,929.96 152.56 91.39
2 No action 0.09 sleep 15.83 15.92 144,929.94 152.56 91.39
3 No action 0.09 sleep 15.83 15.92 144,929.92 152.56 91.39

With short reexecution time (blocking operations)
1 2.1 GHz 0.03 1.2 GHz 2.33 2.36 10,022.36 70.73 42.61
2 2.1 GHz 0.03 1.2 GHz 2.33 2.36 10,022.40 70.73 42.61
3 2.1 GHz 0.03 1.2 GHz 2.33 2.36 10,022.46 70.72 42.61

With short reexecution time (non-blocking operations)
1 2.1 GHz 0.16 1.2 GHz 2.20 2.36 9,605.29 67.92 40.92
2 2.1 GHz 0.16 1.2 GHz 2.20 2.36 9,605.62 67.92 40.92
3 2.1 GHz 0.16 1.2 GHz 2.20 2.36 9,605.39 67.92 40.91

cure Computing, vol. 15, no. 2, pp. 336–350, 2018.

[13] A. Bouteiller, F. Cappello, J. Dongarra, A. Guermouche, T. Hérault, and
Y. Robert, “Multi-criteria checkpointing strategies: Response-time ver-
sus resource utilization,” in European Conference on Parallel Processing,
pp. 420–431, Springer, 2013.

[14] K. Dichev, K. Cameron, and D. S. Nikolopoulos, “Energy-efficient localised
rollback via data flow analysis and frequency scaling,” in Proceedings of the
25th European MPI Users’ Group Meeting, pp. 1–11, 2018.

[15] S. Bhalachandra, A. Porterfield, S. L. Olivier, and J. F. Prins, “An adaptive
core-specific runtime for energy efficiency,” in IEEE International Parallel
and Distributed Processing Symposium, pp. 947–956, 2017.

[16] B. Rountree, D. K. Lowenthal, B. R. De Supinski, M. Schulz, V. W. Freeh,
and T. Bletsch, “Adagio: making DVS practical for complex HPC appli-

34

Figure 14: Scenario 7: Matrix multiplication with short reexecution time (block-
ing operations)

cations,” in Proceedings of the 23rd international conference on Supercom-
puting, pp. 460–469, 2009.

[17] X. Wu, V. Taylor, and Z. Lan, “Performance and power modeling and pre-
diction using mummi and ten machine learning methods,” arXiv preprint
arXiv:2011.06655, 2020.

[18] S. Wang, H. Chen, and W. Shi, “Span: A software power analyzer for multi-
core computer systems,” Sustainable Computing: Informatics and Systems,
vol. 1, no. 1, pp. 23–34, 2011.

[19] M. F. Dolz, J. C. Fernández, S. Iserte, R. Mayo, and E. S. Quintana-
Ort́ı, “A simulator to assess energy saving strategies and policies in hpc
workloads,” SIGOPS Oper. Syst. Rev., vol. 46, p. 2–9, jul 2012.

[20] M. Knobloch, B. Mohr, and T. Minartz, “Determine energy-saving po-
tential in wait-states of large-scale parallel programs,” Computer science-
research and development, vol. 27, no. 4, pp. 255–263, 2012.

[21] L. Piga, I. Paul, andW. Huang, “Performance boosting opportunities under
communication imbalance in power-constrained hpc clusters,” in 2016 45th
International Conference on Parallel Processing (ICPP), pp. 31–40, IEEE,
2016.

[22] D. Cesarini, A. Bartolini, P. Bonfà, C. Cavazzoni, and L. Benini, “Count-
down: A run-time library for application-agnostic energy saving in MPI
communication primitives,” in Proceedings of the 2nd Workshop on Au-
totuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems,
pp. 1–6, 2018.

[23] S. Levy, B. Topp, K. B. Ferreira, D. Arnold, P. Widener, and T. Hoefler,
“Using simulation to evaluate the performance of resilience strategies and
process failures,” Sandia Labs, Tech. Report SAND2014-0688, 2014.

35

Figure 15: Scenario 7: Matrix multiplication with short reexecution time (non-
blocking operations)

[24] H. Meyer, R. Muresano, M. Castro-León, D. Rexachs, and E. Luque, “Hy-
brid message pessimistic logging. improving current pessimistic message
logging protocols,” Journal of Parallel and Distributed Computing, vol. 104,
pp. 206–222, 2017.

[25] M. Castro-León, H. Meyer, D. Rexachs, and E. Luque, “Fault tolerance
at system level based on RADIC architecture,” Journal of Parallel and
Distributed Computing, vol. 86, pp. 98–111, 2015.

[26] J. C. Ho, C.-L. Wang, and F. C. Lau, “Scalable group-based check-
point/restart for large-scale message-passing systems,” in 2008 IEEE In-
ternational Symposium on Parallel and Distributed Processing, pp. 1–12,
IEEE, 2008.

[27] A. Wong, D. Rexachs, and E. Luque, “Pas2p tool, parallel application sig-
nature for performance prediction,” in International Workshop on Applied
Parallel Computing, pp. 293–302, Springer, 2010.

[28] M. H. MacDougall, Simulating computer systems: techniques and tools.
MIT press, 1987.

36

	Introduction
	Related Work
	Fault Tolerance and energy consumption
	Energy saving

	Background
	ACPI
	Communication operations in MPI
	Active and idle waiting in MPI
	Rollback recovery

	Strategies definition and application
	Change of the application
	Changes of the P and S states
	Cascade blocking and communications depth
	Estimation of the compute and waiting phases
	Evaluation of the energy-saving strategies
	Secondary effects of the frequency change in the compute phase
	Secondary effects of sending a node to sleep

	Energy model
	Compute phase energy
	Waiting phase energy

	The simulator
	Experimentation and results analysis
	Experimental settings
	Experiments and results analysis
	Scenario 1: Short vs. long re-execution time
	Scenario 2: Blocking vs. non-blocking MPI operations
	Scenario 3: Active waits vs. idle waits
	Scenario 4: With and without system buffers
	Scenario 5: With and without analysis of cascade-blocked processes
	Scenario 6: With and without checkpoint anticipations
	Scenario 7: Matrix Multiplication

	Discussion

	Conclusions and future work

